TOPIC PLAN

| Partner | Goce Delcev University - Stip, North Macedonia |
| :--- | :--- | organization


| Topic | Application of Derivatives |
| :--- | :--- |
| Lesson title | Minimizing and Maximizing Problems |


| Learning <br> objectives | $\checkmark$ | Students will be able to estimate minimum and <br> maximum values of different sizes using <br> differentiation; |
| :--- | :---: | :--- | :--- |
| $\checkmark$ | Students will acquire and deal with derivatives of <br> a function; |  |

$\checkmark$ Students will be able to deal with different problems in everyday life, which require finding minimum or maximum value of a given size;
$\checkmark$ Students are encouraged to use technology and different software in their work, while considering problem based situations.

| Aim of the | The aim of the lecture is to make students able to |
| :--- | :--- | lecture /

Description
of the
practical
problem calculate derivatives of a function and apply the derivatives to calculate minimum and maximum of given size.

The teacher gives the next problem to the students:
A farmer in his orchard plants has 50 apple trees. Each tree produces approximately 900 apples in a season. The farmer wants to enlarge the orchard and plant more trees, but by his experience, he knows that for each additional tree planted in the orchard, the output per tree drops by 15 apples for each new tree. How many trees the farmer should add to the existing orchard in order to maximize the total output of the trees?

## Strategies/Activitie

$\square$ Graphic
Organizer
-Think/Pair/Share
$\square$ Modeling
$\square$ Collaborative
learning
Discussion
questions
$\square$ Project based
learning
$\square$ Problem based learning
Assessment for
learning
$\square$ Observations
$\square$ Conversations
$\square$ Work sample
$\square$ Conference
$\square$ Check list
$\square$ Diagnostics
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

|  | 54 | 840 | 45360 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 55 | 825 | 45375 |  |
|  | 56 | 810 | 45360 |  |
|  | 57 | 795 | 45315 |  |
|  | 58 | 780 | 45240 |  |
|  | 59 | 765 | 45135 |  |
|  | 60 | 750 | 45000 |  |
|  | Accordin outcome more tre outcome. <br> Students table, using | e tab ates en <br> reat el: | dents there ntribu <br> ent ch | n realize that the re 55 apple tree in decreasing <br> ts with the data |
|  | 120000 <br> 100000 <br> 80000 <br> 60000 <br> 40000 <br> 20000 <br> 0 |  |  | $\qquad$ Total outcome $\qquad$ Outcome per tree $\qquad$ Number of trees |

Now, if we give to the students similar problem, but with other numbers, for example 100 trees in the orchard, 1000 apples outcome per tree and 5 apple less for each new tree and encourage them to use again excel for easier calculations (using formulas in it), students will notice that the total outcome is increasing for 10 new trees, for 20 new trees, etc. and for 50 new trees the total outcome is increasing for each new tree. In the spreadsheets they can see that if the farmer plant 51 new trees, the total outcome will be less than the one with 50 new trees, thus it is now starting to decrease.

[^0]Co-funded by the Erasmus+ Programme of the European Union

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Co-funded by the Erasmus+ Programme of the European Union

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."


[^1]
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

|  | $f(x), \quad$ then its derivative (if it exists), i.e. <br> $\left[f^{\prime}(x)\right]^{\prime}=f^{\prime \prime}(x)$ is called the second derivative of a <br> function $f(x)$. <br> The derivatives can be applied for calculating extreme <br> values of different sizes. <br> If $y=f(x)$ is given function, the function $f$ has its <br> minimum value at if $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$. <br> The function $f$ has its maximum value at $\quad x=c \quad$ if <br> $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$. <br> If we consider certain size as a function with one <br> variable, we can find its minimum or maximum values <br> with the above rules. |
| :--- | :--- |
| Action | Let us return to the given problem and construct an <br> appropriate function to find the maximum outcome from <br> the apple trees. <br> Here is the given problem: <br> A farmer in his orchard plants has 50 apple trees. Each <br> tree produces approximately 900 apples in a season. <br> The farmer wants to enlarge the orchard and plant more <br> trees, but by his experience, he knows that for each <br> additional tree planted in the orchard, the output per tree <br> drops by 15 apples for each new tree. How many trees <br> the farmer should add to the existing orchard in order to <br> maximize the total output of the trees? |
| Let us denote the total outcome with $P$ and the new |  |
| trees with $x$. According to the problem conditions we |  |
| have: $\quad P(x)=(50+x)(900-15 x)$ |  |$|$

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

|  | According to the rules which determine the extreme values, we have to calculate the first derivative and calculate $x$ such that $P^{\prime}(x)=0$ : $\begin{aligned} P^{\prime}(x) & =150-30 x \\ 150-30 x & =0 \quad \Leftrightarrow \quad x=5 \end{aligned}$ <br> The second derivative is $P^{\prime \prime}(x)=-30<0$ thus for $x=5$ the functions reaches its maximum value. <br> So, the farmer has to enlarge his orchard with 5 apple trees in order to maximize the total output. <br> For the other problem which was given to the students, actually the same problem with other numbers, calculating in a same way, students can find: $\begin{gathered} P=(100+x)(1000-5 x) \\ P=100000+500 x-5 x^{2} \\ P^{\prime}=500-10 x \\ P^{\prime}=0 \Leftrightarrow x=50 \end{gathered}$ <br> Thus, in this case the farmer should plant 50 more trees to the existing in order to maximize the outcome. |  |
| :---: | :---: | :---: |
| Materials / equipment / digital tools / software | Literature given in the references at the end of the document / <br> Digital device which supports Excel / Excel |  |
| Consolidatio n | With the given examples students can consider that the derivatives are important for solving real life problems. S is a derivative of a function and how to calculate it. They differentiation and derivatives to maximize / minimize conditions. Students can use technology, different digital a help for solving problems, but can also realize that solving different everyday problems is difficult without math | al functions and their udents will learn what an learn how to apply rtain value by given ools and software as ven with technology, knowledge. |
| Reflections and next steps |  |  |
| Activities that worked Parts to be r |  | visited |

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

| Problem solving, collaboration, using technology | Depends on the students, in a <br> conversation with students the <br> teacher will realize the difficulties <br> that students had and then revisit <br> appropriate parts. |
| :--- | :--- |
| References | [1] M. L. Bittinger, D. J. Ellenbogen and S.A. Surgent (2012), "Calculus and its applications", <br> Addison-Wesley <br> [2] G. Strang "Calculus", Wellelye-Cambridge Press <br> [3] S. Calaway D. Hoffman and D.Lippman (2014) "Applied Calculus" <br> [4] P.D. Lax, M. S.Terrell (2014) "Calculus with Applications", Springer <br>  |

[^2]
[^0]:    "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]:    "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]:    "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

