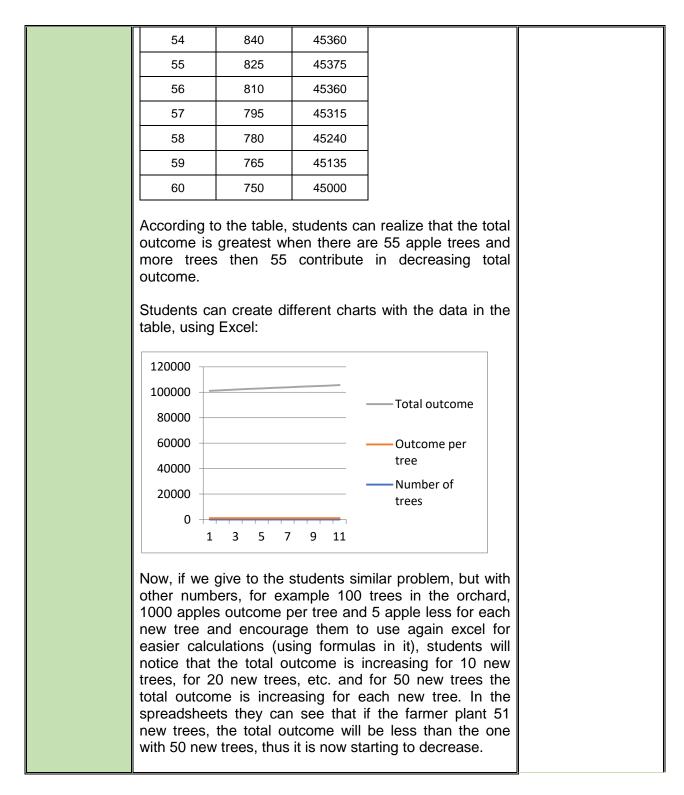
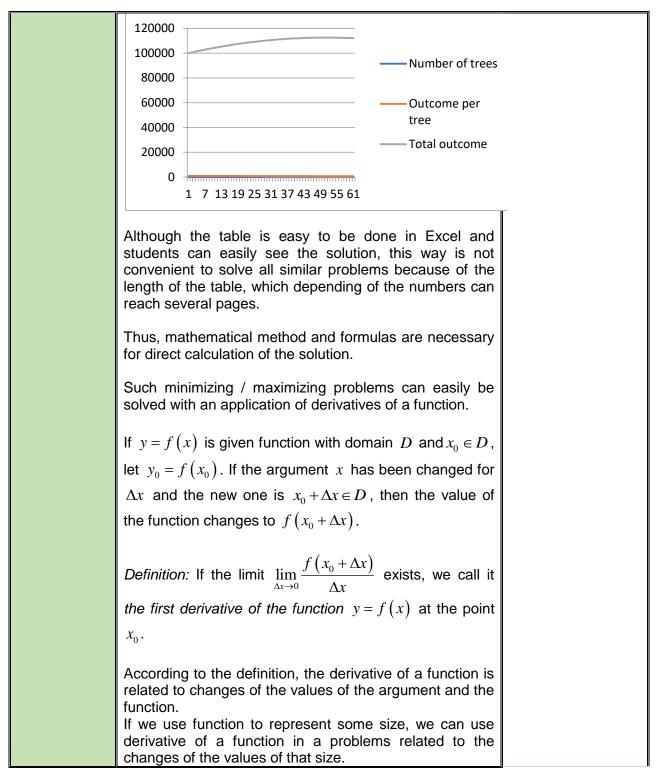


TOPIC PLAN					
Partner	Goce Delcev University – Stip, North Macedonia				
organization					
Торіс	Application of Derivatives				
Lesson title	Minimizing and Maximizing Problems				
Learning objectives	 Students will be able to estimate minimum and maximum values of different sizes using differentiation; 	Strategies/Activitie			
	 Students will acquire and deal with derivatives of a function; 	□Graphic Organizer ■Think/Pair/Share			
	 Students will be able to deal with different problems in everyday life, which require finding minimum or maximum value of a given size; 	□Modeling ■Collaborative learning			
	 Students are encouraged to use technology and different software in their work, while considering problem based situations. 	Discussion questions Project based			
Aim of the lecture / Description of the practical	The aim of the lecture is to make students able to calculate derivatives of a function and apply the derivatives to calculate minimum and maximum of given size.	learning Problem based learning			
problem	The teacher gives the next problem to the students:	Assessment for learning			
	A farmer in his orchard plants has 50 apple trees. Each tree produces approximately 900 apples in a season. The farmer wants to enlarge the orchard and plant more trees, but by his experience, he knows that for each additional tree planted in the orchard, the output per tree drops by 15 apples for each new tree. How many trees the farmer should add to the existing orchard in order to maximize the total output of the trees?	 Observations Conversations Work sample Conference Check list Diagnostics 			



Previous knowledge assumed:	 polynomials polynomial functions algebraic equations differentiating techniques 			Assessment as learning Self-assessment Peer-assessment Presentation Graphic Organizer Homework
Introduction / Theoretical basics	approximately <i>m</i> ap from those trees is 50 trees give is P=5 If the farmer plant of be P=(50+1)*(900-1) If the farmer plant the be P=52*(900-2*15) Students can notice Students are encour for such calculations If the farmer plants 10*15)=60*750=45 Thus the total outc	bles in a sease P=N*m. Thus, $D*900=45\ 000$ and more tree, 5)=51*885=45 wo more trees, $=45\ 240\ apples$ that the total of raged to use E 10 trees, the color and the seases then at the eas at the beg $me\ following:$ Total	the total outcome will 135 apples. the total outcome will s, etc. utcome is growing up. xcel and formulas in it outcome is P=60*(900- sing and although the le beginning, the total	Assessment of learning Test Quiz Presentation Project Published work

Number of trees	Outcome per tree	Total outcome
100	1000	100000
101	995	100495
102	990	100980
103	985	101455
104	980	101920
105	975	102375
105	970	
		102820
107	965	103255
108	960	103680
109	955	104095
110	950	104500
111	945	104895
112	940	105280
113	935	105655
114	930	106020
115	925	106375
116	920	106720
117	915	107055
118	910	107380
119	905	107695
120	900	108000
121	895	108295
122	890	108580
123	885	108855
124	880	109120
125	875	109375
126 127	870 865	109620 109855
127	860	1109855
120	855	110295
130	850	110200
131	845	110695



132	840	110880	
133	835	111055	
134	830	111220	
135	825	111375	
136	820	111520	
137	815	111655	
138	810	111780	
139	805	111895	
140	800	112000	
141	795	112095	
142	790	112180	
143	785	112255	
144	780	112320	
145	775	112375	
146	770	112420	
147	765	112455	
148	760	112480	
149	755	112495	
150	750	112500	
151	745	112495	
152	740	112480	
153	735	112455	
154	730	112420	
155	725	112375	
156	720	112320	
157	715	112255	
158	710	112180	
159	705	112095	
160	700	112000	

Using the definition of the first derivative, the derivatives of some elementary functions are calculated and are now used for calculating derivatives of other functions. A table of some elementary functions with their derivatives is the following: $f(x) = c, \quad f'(x) = 0$ $f(x) = x^n, \quad f'(x) = nx^{n-1}$ $f(x) = \frac{1}{r}, \quad f'(x) = -\frac{1}{r^2}$ $f(x) = \sqrt{x}, \quad f'(x) = \frac{1}{2\sqrt{x}}$ $f(x) = e^x$, $f'(x) = e^x$ $f(x) = \ln x, \quad f'(x) = \frac{1}{r}$ $f(x) = a^{x}, f'(x) = ax^{n-1}$ Let f(x) and g(x) be differentiable functions and c is a constant. Then the following equations hold: (cf(x))' = cf'(x) - constant multiple rule (f(x) + g(x))' = f'(x) + g'(x) - sum rule (f(x) - g(x))' = f'(x) - g'(x) - difference rule $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ - product rule $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left(g(x)\right)^2}$ for $g(x) \neq 0$ - quotient rule Definition: If f'(x) is a first derivative of a function

[&]quot;The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	f(x) then the derivative $f(t, t)$ events $f(t, t)$					
	f(x), then its derivative (if it exists), i.e.					
	[f'(x)]' = f''(x) is called the second derivative of a					
	function $f(x)$.					
	The derivatives can be applied for calculating extreme					
	The derivatives can be applied for calculating extreme values of different sizes.					
	If $y = f(x)$ is given function, the function f has its					
	minimum value at if $f'(c) = 0$ and $f''(c) > 0$.					
	The function f has its maximum value at $x = c$ if					
	f'(c) = 0 and $f''(c) < 0$.					
	If we consider certain size as a function with one					
	variable, we can find its minimum or maximum values					
	with the above rules.					
Action						
	Let us return to the given problem and construct an appropriate function to find the maximum outcome from					
	the apple trees.					
	Here is the given problem:					
	A farmer in his orchard plants has 50 apple trees. Each					
	tree produces approximately 900 apples in a season.					
	The farmer wants to enlarge the orchard and plant more trees, but by his experience, he knows that for each					
	additional tree planted in the orchard, the output per tree					
	drops by 15 apples for each new tree. How many trees the farmer should add to the existing orchard in order to					
	maximize the total output of the trees?					
	Let us denote the total outcome with P and the new					
	trees with x . According to the problem conditions we					
	have:					
	P(x) = (50+x)(900-15x)					
	$P(x) = 45000 - 750x + 900x - 15x^2$					
	$P(x) = 45000 + 150x - 15x^2$					

Activities that	worked Parts to be re	visited		
Reflections and next steps				
Consolidatio n	With the given examples students can consider that the real functions and their derivatives are important for solving real life problems. Students will learn what is a derivative of a function and how to calculate it. They can learn how to apply differentiation and derivatives to maximize / minimize certain value by given conditions. Students can use technology, different digital tools and software as a help for solving problems, but can also realize that even with technology, solving different everyday problems is difficult without math knowledge.			
Materials / equipment / digital tools / software	Literature given in the references at the end of the document / Digital device which supports Excel / Excel			
	$P = (100 + x)(1000 - 5x)$ $P = 100000 + 500x - 5x^{2}$ $P' = 500 - 10x$ $P' = 0 \iff x = 50$ Thus, in this case the farmer should plant 50 more trees to the existing in order to maximize the outcome.			
	So, the farmer has to enlarge his orchard with 5 apple trees in order to maximize the total output. For the other problem which was given to the students, actually the same problem with other numbers, calculating in a same way, students can find:			
	According to the rules which determine the extreme values, we have to calculate the first derivative and calculate x such that $P'(x) = 0$: P'(x) = 150 - 30x $150 - 30x = 0 \iff x = 5$ The second derivative is $P''(x) = -30 < 0$ thus for $x = 5$ the functions reaches its maximum value.			

Problem solving, collaboration, using technology	Depends on the students, in a conversation with students the teacher will realize the difficulties that students had and then revisit appropriate parts.
References [1] M. L. Bittinger, D. J. Ellenbogen and S.A. Surgent (2 Addison-Wesley [2] G. Strang "Calculus", Wellelye-Cambridge Press [3] S. Calaway D. Hoffman and D.Lippman (2014) "Applie [4] P.D. Lax, M. S.Terrell (2014) "Calculus with Application of the second secon	d Calculus"